SentenceTransformer的安装及简单使用教程
前言:
SentenceTransformer做什么的?
SentenceTransformer主要是用来对句子、文本和图像进行嵌入,文本和图像的相似度对比与查找等
文档手册
https://huggingface.co/docs/transformers/installation
备用手册
https://www.sbert.net

来源:诚通网盘 | 提取码:7598
镜像源在线安装:
安装命令
pip install -U sentence-transformers -i https://pypi.tuna.tsinghua.edu.cn/simple
安装成功后如图:
离线安装:
离线安装的话我们首先要下载sentence_transformers离线安装包

来源:诚通网盘 | 提取码:7598
安装前需要先下载离线包然后解压,然后切换到解压后的目录
然后运行命令:
python setup.py install
安装完成后如图:
比较两个句子的相似度
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer("all-MiniLM-L6-v2")
# Sentences are encoded by calling model.encode()
emb1 = model.encode("This is a black cat with a hat.")
emb2 = model.encode("Have you seen my white cat?")
cos_sim = util.cos_sim(emb1, emb2)
print("Cosine-Similarity:", cos_sim)
结果:
实现文本的嵌入
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("all-MiniLM-L6-v2")
# Our sentences we like to encode
sentences = [
"This framework generates embeddings for each input sentence",
"Sentences are passed as a list of string.",
"The quick brown fox jumps over the lazy dog.",
"This is a black cat with a hat."
]
# Sentences are encoded by calling model.encode()
sentence_embeddings = model.encode(sentences)
# Print the embeddings
for sentence, embedding in zip(sentences, sentence_embeddings):
print("Sentence:", sentence)
print("Embedding:", embedding)
结果:
常见错误:
原因:
在线下载模型失败
解决办法:
离线下载sentence-transformers模型,解压到项目目录
文件下载:

来源:诚通网盘 | 提取码:7598

来源:诚通网盘 | 提取码:7598
版权声明:
作者:崔圣杰
链接:https://www.cuishengjie.com/1010.html
来源:论剑阁-崔圣杰博客
文章版权归作者所有,未经允许请勿转载。
THE END
0
二维码
打赏
海报


SentenceTransformer的安装及简单使用教程
文章目录[隐藏]
前言:
镜像源在线安装:
离线安装:
比较两个句子的相似度
结果:
实现文本的嵌入
结果:
常见错误:
原因:
解决办法:
文件下载:
前言……
首页-论剑阁-崔圣杰博客
文章目录
关闭
共有 0 条评论