SentenceTransformer的安装及简单使用教程

前言:

SentenceTransformer做什么的?

SentenceTransformer主要是用来对句子、文本和图像进行嵌入,文本和图像的相似度对比与查找等

文档手册

https://huggingface.co/docs/transformers/installation

备用手册

https://www.sbert.net
来源:诚通网盘 | 提取码:7598

镜像源在线安装:

安装命令

pip install -U sentence-transformers -i https://pypi.tuna.tsinghua.edu.cn/simple

安装成功后如图:

离线安装:

离线安装的话我们首先要下载sentence_transformers离线安装包

来源:诚通网盘 | 提取码:7598

安装前需要先下载离线包然后解压,然后切换到解压后的目录

然后运行命令:

python setup.py install

安装完成后如图:

比较两个句子的相似度

from sentence_transformers import SentenceTransformer, util

model = SentenceTransformer("all-MiniLM-L6-v2")

# Sentences are encoded by calling model.encode()
emb1 = model.encode("This is a black cat with a hat.")
emb2 = model.encode("Have you seen my white cat?")

cos_sim = util.cos_sim(emb1, emb2)
print("Cosine-Similarity:", cos_sim)

结果:

实现文本的嵌入

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("all-MiniLM-L6-v2")

# Our sentences we like to encode
sentences = [
    "This framework generates embeddings for each input sentence",
    "Sentences are passed as a list of string.",
    "The quick brown fox jumps over the lazy dog.",
    "This is a black cat with a hat."
]

# Sentences are encoded by calling model.encode()
sentence_embeddings = model.encode(sentences)

# Print the embeddings
for sentence, embedding in zip(sentences, sentence_embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding)

结果:

常见错误:

原因:

在线下载模型失败

解决办法:

离线下载sentence-transformers模型,解压到项目目录

文件下载:

来源:诚通网盘 | 提取码:7598
来源:诚通网盘 | 提取码:7598

版权声明:
作者:崔圣杰
链接:https://www.cuishengjie.com/1010.html
来源:论剑阁-崔圣杰博客
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
打赏
海报
SentenceTransformer的安装及简单使用教程
文章目录[隐藏] 前言: 镜像源在线安装: 离线安装: 比较两个句子的相似度 结果: 实现文本的嵌入 结果: 常见错误: 原因: 解决办法: 文件下载: 前言……
<<上一篇
下一篇>>
文章目录
关闭
目 录